<< Go Back  Next Page >>

XYZ Spectral Sensitivity Curves

First, let’s get those Gaussian curves for the XYZ spectral sensitivity curves. I’ve pre-generated these into (you guessed it, CSV).

Put this into your development directory, with everything else:

In our __init__ function, do the following:

cmf = open("cie-cmf.csv", "r") 
contents = cmf.readlines()
CIE_CMF = [None] * 42
for line in contents:
    data = line .rstrip("\n").split(",")
    CIE_CMF[int((int(data [0]) - 380) / 10)] = [float(data [1]),float(data [2]),float(data [3])]
cmf.close()
for nm in range(380,790,10):
    self.CIE_XYZ_Spectral_Sensitivity_Curve[nm] = CIE_CMF[int((nm - 380)/10)]

And declare at the top of our class, CIE_CMF:

class SkinAbsorption:
    O2Hb = {}
    Hb = {}
    CIE_XYZ_Spectral_Sensitivity_Curve = {}

This will store the values in a dictionary.

RGB Matrices

Now to add in our RGB matrix and gamma correction for sRGB:

def gamma_correction(self, C):
    abs_C = abs(C)
    if abs_C > 0.0031308:
        return 1.055 * pow(abs_C,1/2.4) - 0.055
    else:
        return 12.92 * C

def XYZ_to_sRGB(self, xyz):
    x = xyz[0]/10
    y = xyz[1]/10
    z = xyz[2]/10
    mat3x3 = [(3.2406, -1.5372, -0.4986), (-0.9689,   1.8758,  0.0415), (0.0557, -0.204,  1.057)]
   
    r = self.gamma_correction(x * mat3x3[0][0] + y * mat3x3[0][1] + z * mat3x3[0][2])
    g = self.gamma_correction(x * mat3x3[1][0] + y * mat3x3[1][1] + z * mat3x3[1][2])
    b = self.gamma_correction(x * mat3x3[2][0] + y * mat3x3[2][1] + z * mat3x3[2][2])
    sRGB = (int(r*255),int(g*255),int(b*255)) #needs to be 0 - 255 for outputing to color image
    return sRGB

Converting Our Data

Our data isn’t in a usable state yet. We need to restructure the data coming from the Monte Carlo simulation to be organised by melanin blend, melanin fraction, hemoglobin fraction – this is so we can output a pixel of colour for each value.

We’ll replace all our CSV output code, and instead of returning a string, we’ll return tuples of the values, like so:

def GetReflectanceValues(self, Cm, Ch, Bm):
    wavelengths = range(380,790,10)
    reflectances = []
    for nm in wavelengths:
		
    # First layer absorption - Epidermis
    SAV_eumelanin_L = 6.6 * pow(10,10) * pow(nm,-3.33)
    SAV_pheomelanin_L = 2.9 * pow(10,14) * pow(nm,-4.75)
    epidermal_hemoglobin_fraction = Ch * 0.25
		
    # baseline - used in both layers
    baselineSkinAbsorption_L = 0.0244 + 8.54 * pow(10,-(nm-220)/123)

    # Epidermis Absorption Coefficient:          
    epidermis = Cm * ((Bm * SAV_eumelanin_L) +((1 -  Bm ) * SAV_pheomelanin_L)) + ((1 - epidermal_hemoglobin_fraction) * baselineSkinAbsorption_L)
		
    # Second layer absorption - Dermis
    gammaOxy = self.O2Hb[int(nm)]
    gammaDeoxy = self.Hb[int(nm)]
    A = 0.75 * gammaOxy + (1 - 0.75) * gammaDeoxy      
    dermis = Ch * (A + (( 1 - Ch) * baselineSkinAbsorption_L))
		
    # Scattering coefficients
    scattering_epidermis = pow(14.74 * nm, -0.22) + 2.2 * pow(10,11) * pow(nm, -4)
    scattering_dermis = scattering_epidermis * 0.5
		
    reflectance = self.MonteCarlo(epidermis, scattering_epidermis, dermis, scattering_dermis, nm)
    reflectances.append( (reflectance,Cm,Ch,Bm,nm,epidermis,dermis,baselineSkinAbsorption_L))
return reflectances

And adjust the generate function:

def Generate(self):
    groupByBlend = []
    for Bm in [0.01,0.5,0.99]:
        groupByMelanin = []
        for Cm in [0.002,0.0135,0.0425,0.1,0.185,0.32,0.5]:
            groupByHemoglobin = []
            for Ch in [0.003,0.02,0.07,0.16,0.32]:
                values = self.GetReflectanceValues( Cm, Ch, Bm )
                groupByHemoglobin.append(values)
            groupByMelanin.append(groupByHemoglobin)
        groupByBlend.append(groupByMelanin)
    return groupByBlend

Now, above the return statement add the following to convert all our data to sRGB:

XYZ_Colors = []
specular_col = []
for melanin_blend in groupByBlend:
    for melanin_fraction in melanin_blend :
        for hemoglobin_fraction in melanin_fraction:
            total = (0,0,0)
            spec = [0.0] * 41
            for data in hemoglobin_fraction:
                reflectance = data[0]
                spec[int((data[4] -380) / 10)] = data[0]
                xyz = self.CIE_XYZ_Spectral_Sensitivity_Curve.get(data[4])
                x = xyz[0] * reflectance
                y = xyz[1] * reflectance
                z = xyz[2] * reflectance
                total = (total[0] + x, total[1] + y, total[2] + z)
            XYZ_Colors.append(total)


pixelsRGB = []
for xyz in XYZ_Colors:
    pixelsRGB.append(self.XYZ_to_sRGB(xyz))

Next step, we’ll make an image!

<< Go Back  Next Page >>

For reference, current code:

import random
import math
from PIL import Image

class SkinAbsorption:

    O2Hb = {}
    Hb = {}
    CIE_XYZ_Spectral_Sensitivity_Curve = {}
    
    def __init__(self):
        print("init SkinAbsorption")

        cmf = open("cie-cmf.csv", "r") 
        contents = cmf.readlines()
        CIE_CMF = [None] * 42
        for line in contents:
            data = line .rstrip("\n").split(",")
            CIE_CMF[int((int(data [0]) - 380) / 10)] = [float(data [1]),float(data [2]),float(data [3])]
        cmf.close()
        for nm in range(380,790,10):
            self.CIE_XYZ_Spectral_Sensitivity_Curve[nm] = CIE_CMF[int((nm - 380)/10)]
        
        HbFile = open('hb.csv', "r")
        O2HbFile = open('O2Hb.csv', "r")

        HbLines = HbFile.readlines()
        for line in HbLines:
            splitLine = line.split(",")
            self.Hb[int(splitLine[0])] = float(splitLine[1].rstrip("\n"))

        O2HbLines = O2HbFile.readlines()
        for line in O2HbLines:
            splitLine = line.split(",")
            self.O2Hb[int(splitLine[0])] = float(splitLine[1].rstrip("\n"))
            
        HbFile.close()
        O2HbFile.close()

    def Generate(self):
        groupByBlend = []
        for Bm in [0.01,0.5,0.99]:
            groupByMelanin = []
            for Cm in [0.002,0.0135,0.0425,0.1,0.185,0.32,0.5]:
                groupByHemoglobin = []
                for Ch in [0.003,0.02,0.07,0.16,0.32]:
                    values = self.GetReflectanceValues( Cm, Ch, Bm )
                    groupByHemoglobin.append(values)
                groupByMelanin.append(groupByHemoglobin)
            groupByBlend.append(groupByMelanin)

        XYZ_Colors = []
        specular_col = []
        for melanin_blend in groupByBlend: # Mb
            for melanin_fraction in melanin_blend:
                for hemoglobin_fraction in melanin_fraction: # Mf
                    total = (0,0,0)
                    spec = [0.0] * 41
                    for data in hemoglobin_fraction: # Hf
                        
                        print(data)
                            
                        reflectance = data[0]

                        spec[int((data[4] -380) / 10)] = data[0]

                        xyz = self.CIE_XYZ_Spectral_Sensitivity_Curve.get(data[4])
                        x = xyz[0] * reflectance
                        y = xyz[1] * reflectance
                        z = xyz[2] * reflectance
                        total = (total[0] + x, total[1] + y, total[2] + z)

                    XYZ_Colors.append(total)


        pixelsRGB = []
        for xyz in XYZ_Colors:
            pixelsRGB.append(self.XYZ_to_sRGB(xyz))

        return pixelsRGB
    
    def GetReflectanceValues(self, Cm, Ch, Bm):
        wavelengths = range(380,790,10)
        reflectances = []
        for nm in wavelengths:
            
            # First layer absorption - Epidermis
            SAV_eumelanin_L = 6.6 * pow(10,10) * pow(nm,-3.33)
            SAV_pheomelanin_L = 2.9 * pow(10,14) * pow(nm,-4.75)
            epidermal_hemoglobin_fraction = Ch * 0.25
            
            # baseline - used in both layers
            baselineSkinAbsorption_L = 0.0244 + 8.54 * pow(10,-(nm-220)/123)

            # Epidermis Absorption Coefficient:          
            epidermis = Cm * ((Bm * SAV_eumelanin_L) +((1 -  Bm ) * SAV_pheomelanin_L)) + ((1 - epidermal_hemoglobin_fraction) * baselineSkinAbsorption_L)
            
            # Second layer absorption - Dermis
            gammaOxy = self.O2Hb[int(nm)]
            gammaDeoxy = self.Hb[int(nm)]
            A = 0.75 * gammaOxy + (1 - 0.75) * gammaDeoxy      
            dermis = Ch * (A + (( 1 - Ch) * baselineSkinAbsorption_L))
            
            # Scattering coefficients
            scattering_epidermis = pow(14.74 * nm, -0.22) + 2.2 * pow(10,11) * pow(nm, -4)
            scattering_dermis = scattering_epidermis * 0.5
            
            reflectance = self.MonteCarlo(epidermis, scattering_epidermis, dermis, scattering_dermis, nm)
            reflectances.append((reflectance,Cm,Ch,Bm,nm,epidermis,dermis,baselineSkinAbsorption_L))
        return reflectances

    def MonteCarlo (self, epi_mua, epi_mus, derm_mua, derm_mus, nm):
        # These are our Monte Carlo Light Transport Variables that don't change
        Nbins = 1000
        Nbinsp1 = 1001
        PI = 3.1415926
        LIGHTSPEED = 2.997925 * pow(10,10)
        ALIVE = 1
        DEAD = 0
        THRESHOLD = 0.01
        CHANCE = 0.1
        COS90D = 1 * pow(10,-6)
        ONE_MINUS_COSZERO = 1 * pow(10,-12)
        COSZERO = 1.0 - 1.0e-12     # cosine of about 1e-6 rad
        g = 0.9
        nt = 1.33 # Index of refraction
        epidermis_thickness = 0.25

        x = 0.0
        y = 0.0
        z = 0.0 # photon position

        ux = 0.0
        uy = 0.0
        uz = 0.0 # photon trajectory as cosines

        uxx = 0.0
        uyy = 0.0
        uzz = 0.0 # temporary values used during SPIN

        s = 0.0 # step sizes. s = -log(RND)/mus [cm] 
        costheta = 0.0 # cos(theta) 
        sintheta = 0.0 # sin(theta) 
        cospsi = 0.0 # cos(psi) 
        sinpsi = 0.0 # sin(psi) 
        psi = 0.0 # azimuthal angle 
        i_photon = 0.0 # current photon
        W = 0.0 # photon weight 
        absorb = 0.0 # weighted deposited in a step due to absorption 
        photon_status = 0.0 # flag = ALIVE=1 or DEAD=0 
        ReflBin = [None] * Nbinsp1 #bin to store weights of escaped photos for reflectivity
        epi_albedo = epi_mus/(epi_mus + epi_mua) # albedo of tissue
        derm_albedo = derm_mus/(derm_mus + derm_mua) # albedo of tissue
        Nphotons = 1000 # number of photons in simulation 
        NR = Nbins # number of radial positions 
        radial_size = 2.5 # maximum radial size 
        r = 0.0 # radial position 
        dr = radial_size/NR; # cm, radial bin size 
        ir = 0 # index to radial position 
        shellvolume = 0.0 # volume of shell at radial position r 
        CNT = 0.0 # total count of photon weight summed over all bins 
        rnd = 0.0 # assigned random value 0-1 
        u = 0.0
        temp = 0.0 # dummy variables

        # Inits
        random.seed(0)
        RandomNum = random.random()
        for i in range(NR+1):
            ReflBin[i] = 0

        while True:
            i_photon = i_photon + 1

            W = 1.0
            photon_status = ALIVE

            x= 0
            y = 0
            z = 0

            #Randomly set photon trajectory to yield an isotropic source.
            costheta = 2.0 * random.random() - 1.0

            sintheta = math.sqrt(1.0 - costheta*costheta)
            psi = 2.0 * PI * random.random()
            ux = sintheta * math.cos(psi)
            uy = sintheta * math.sin(psi)
            uz = (abs(costheta)) # on the first step we want to head down, into the tissue, so > 0

            # Propagate one photon until it dies as determined by ROULETTE.
            # or if it reaches the surface again
            it = 0
            max_iterations = 100000 # to help avoid infinite loops in case we do something wrong

            # we'll hit epidermis first, so set mua/mus to those scattering/absorption values
            mua = epi_mua
            mus = epi_mus
            albedo = epi_albedo
            while True:            
                it = it + 1
                rnd = random.random()
                while rnd <= 0.0: # make sure it is > 0.0
                    rnd = random.random()
                s = -math.log(rnd)/(mua + mus)
                x = x + (s * ux)
                y = y + (s * uy)
                z = z + (s * uz)

                if uz < 0:
                    # calculate partial step to reach boundary surface
                    s1 = abs(z/uz)
                    # move back
                    x = x - (s * ux)
                    y = y - (s * uy)
                    z = z - (s * uz)
                    # take partial step
                    x = x + (s1 * ux)
                    y = y + (s1 * uy)
                    z = z + (s1 * uz)

                    # photon is now at the surface boundary, figure out how much escaped and how much was reflected
                    internal_reflectance = self.RFresnel(1.0,nt, -uz )

                    #Add weighted reflectance of escpaed photon to reflectance bin
                    external_reflectance = 1 - internal_reflectance
                    r = math.sqrt(x*x + y*y)
                    ir = (r/dr)
                    if ir >= NR:
                       ir = NR  
                    ReflBin[int(ir)] = ReflBin[int(ir)] + (W * external_reflectance)
                                                                    
                    # Bounce the photon back into the skin
                    W = internal_reflectance * W
                    uz = -uz
                    x = (s-s1) * ux
                    y = (s-s1) * uy
                    z = (s-s1) * uz

                # check if we have passed into the second layer, or the first
                if z <= epidermis_thickness:
                   mua = epi_mua
                   mus = epi_mus
                   albedo = epi_albedo
                else:
                   mua = derm_mua
                   mus = derm_mus
                   albedo = derm_albedo

                ''' DROP '''
                absorb = W*(1 - albedo)
                W = W - absorb

                ''' SPIN '''
                # Sample for costheta 
                rnd = random.random()
                if (g == 0.0):
                   costheta = 2.0*rnd - 1.0
                else:
                   temp = (1.0 - g*g)/(1.0 - g + 2*g*rnd)
                   costheta = (1.0 + g*g - temp*temp)/(2.0*g)
                sintheta = math.sqrt(1.0 - costheta*costheta) 

                # Sample psi. 
                psi = 2.0*PI*random.random()
                cospsi = math.cos(psi)
                if (psi < PI):
                   sinpsi = math.sqrt(1.0 - cospsi*cospsi)
                else:
                   sinpsi = -math.sqrt(1.0 - cospsi*cospsi)

                # New trajectory. 
                if (1 - abs(uz) <= ONE_MINUS_COSZERO) :      # close to perpendicular. 
                   uxx = sintheta * cospsi
                   uyy = sintheta * sinpsi
                   uzz = costheta * self.SIGN(uz)   # SIGN() is faster than division. 
                else: # usually use this option 
                   temp = math.sqrt(1.0 - uz * uz)
                   uxx = sintheta * (ux * uz * cospsi - uy * sinpsi) / temp + ux * costheta
                   uyy = sintheta * (uy * uz * cospsi + ux * sinpsi) / temp + uy * costheta
                   uzz = -sintheta * cospsi * temp + uz * costheta

                # Update trajectory 
                ux = uxx
                uy = uyy
                uz = uzz

            
                # Check Roulette
                if (W < THRESHOLD):
                    if (random.random() <= CHANCE):
                        W = W / CHANCE
                    else:
                        photon_status = DEAD
                if photon_status is DEAD:
                    break
                if it > max_iterations:
                    break
            
            if i_photon >= Nphotons:
                break
        total_reflection = 0.0
        for each in range(NR+1):
            total_reflection = total_reflection + ReflBin[each]/Nphotons
        return total_reflection

    def RFresnel(self, n1, n2, cosT1):
        r = 0.0
        cosT2 = 0.0
        COSZERO = 1.0 - 1.0e-12
        COS90D = 1 * pow(10,-6)
        if n1 == n2: #matched boundary
            r = 0.0
            cosT2 = cosT1
        elif cosT1 > COSZERO:     # normal incident
            cosT2 = ca1
            r = (n2-n1)/(n2+n1)
            r *= r
        elif cosT1 < COS90D:      # very slant
            cosT2 = 0.0
            r = 1.0
        else: #general
            sinT1 = math.sqrt(1 - cosT1*cosT1)
            sinT2 = n1 * sinT1/n2
            
            if sinT2 >= 1.0:
                r = 1.0
                cosT2 = 0.0
            else:
                cosT2 = math.sqrt(1 - sinT2 * sinT2)
                cosAP = cosT1*cosT2 - sinT1*sinT2
                cosAM = cosT1*cosT2 + sinT1*sinT2
                sinAP = sinT1*cosT2 + cosT1*sinT2
                sinAM = sinT1*cosT2 - cosT1*sinT2
                r = 0.5 * sinAM * sinAM*(cosAM*cosAM+cosAP*cosAP)/(sinAP*sinAP*cosAM*cosAM)
        return r

    def SIGN(self, x):
        if x >=0:
            return 1
        else:
            return 0
    def gamma_correction(self, C):
        abs_C = abs(C)
        if abs_C > 0.0031308:
            return 1.055 * pow(abs_C,1/2.4) - 0.055
        else:
            return 12.92 * C

    def XYZ_to_sRGB(self, xyz):
        x = xyz[0]/10
        y = xyz[1]/10
        z = xyz[2]/10
        mat3x3 = [(3.2406, -1.5372, -0.4986), (-0.9689,   1.8758,  0.0415), (0.0557, -0.204,  1.057)]
       
        r = self.gamma_correction(x * mat3x3[0][0] + y * mat3x3[0][1] + z * mat3x3[0][2])
        g = self.gamma_correction(x * mat3x3[1][0] + y * mat3x3[1][1] + z * mat3x3[1][2])
        b = self.gamma_correction(x * mat3x3[2][0] + y * mat3x3[2][1] + z * mat3x3[2][2])
        sRGB = (int(r*255),int(g*255),int(b*255)) #needs to be 0 - 255 for outputing to color image
        return sRGB

skinAbsorption = SkinAbsorption()
reflectanceValues = skinAbsorption.Generate()
Categories: Uncategorized

0 Comments

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.